इस पोस्ट में हमलोग Bihar Board BSEB Class 10 Maths Solutions Chapter 3 दो चरों वाले रैखिक समीकरण युग्म Ex 3.5 के सभी क्वेश्चन का हल समाधान सहित जानेंगे। उनमें से ज्यादातर प्रश्न बोर्ड परीक्षा में पूछे जा चुके हैं।
हमारे विशेषज्ञों ने bihar board class 10 math solution in hindi Chapter 3 दो चरों वाले रैखिक समीकरण युग्म के समाधान तैयार किया है। यह बहुत सरलसमाधान है. निम्नलिखितसमाधान को पढ़ने के बाद, आप अपने परीक्षा में बेहतर कर सकते हैं। विज्ञान में आपको बेहतरीन अंक मिल सकते हैं। विज्ञान में उच्च अंक प्राप्त करने के लिए नियमित रूप से इस ब्लॉग को पढ़े।
दो चरों वाले रैखिक समीकरण युग्म – Bihar Board BSEB Class 10 Maths Solutions Chapter 3 Ex 3.5
Bihar Board Class 10 Maths दो चरों वाले रैखिक समीकरण युग्म Ex 3.5
प्रश्न 1. निम्न रैखिक समीकरणों के युग्मों में से किसका एक अद्वितीय हल है, किसका कोई हल नहीं है या किसके अपरिमित रूप से अनेक हल हैं। अद्वितीय हल की स्थिति में, उसे वज्रगुणन विधि से ज्ञात कीजिए।
प्रश्न 2. (i) a और b के किन मानों के लिए, निम्न रैखिक समीकरणों के युग्म के अपरिमित रूप से अनेक हल होंगे?
2x + 3y = 7
(a – b)x + (a + b)y = 3a + b – 2
(ii) k के किस मान के लिए, निम्न रैखिक समीकरणों के युग्म का कोई हल नहीं है?
3x + y = 1
(2k – 1)x + (k – 1)y = 2k + 1
प्रश्न 3. निम्न रैखिक समीकरणों के युग्म को प्रतिस्थापन एवं वज्रगुणन विधियों से हल कीजिए। किस विधि को आप अधिक उपयुक्त मानते हैं?
8x + 5y = 9
3x + 2y = 4
प्रश्न 4. निम्न समस्याओं में रैखिक समीकरणों के युग्म बनाइए और उनके हल (यदि उनका अस्तित्व हो) किसी बीजगणितीय विधि से ज्ञात कीजिए-
- (i) एक छात्रावास के मासिक व्यय का एक भाग नियत है तथा शेष इस पर निर्भर करता है कि छात्र ने कितने दिन भोजन लिया है। जब एक विद्यार्थी A को, जो 20 दिन भोजन करता है, ₹ 1000 छात्रावास के व्यय के लिए अदा करने पड़ते हैं, जबकि एक विद्यार्थी B को, जो 26 दिन भोजन करता है छात्रावास के व्यय के लिए ₹ 1180 अदा करने पड़ते हैं। नियत व्यय और प्रतिदिन के भोजन का मूल्य ज्ञात कीजिए।
- (ii) एक भिन्न 1/3 हो जाती है, जब उसके अंश से 1 घटाया जाता है और वह 1/4 हो जाती है, जब हर में 8 जोड़ दिया जाता है। वह भिन्न ज्ञात कीजिए।
- (iii) यश ने एक टेस्ट में 40 अंक अर्जित किए, जबकि उसे प्रत्येक सही उत्तर पर 3 अंक मिले तथा अशुद्ध उत्तर पर 1 अंक की कटौती की गई। यदि उसे सही उत्तर पर 4 अंक मिलते तथा अशुद्ध उत्तर पर 2 अंक कटते, तो यश 50 अंक अर्जित करता। टेस्ट में कितने प्रश्न थे?
- (iv) एक राजमार्ग पर दो स्थान A और B, 100 किमी० की दूरी पर हैं। एक कार A से तथा दूसरी कार B से एक ही समय चलना प्रारम्भ करती है। यदि ये कारें भिन्न-भिन्न चालों से एक ही दिशा में चलती हैं तो वे 5 घंटे पश्चात् मिलती हैं। जब वे विपरीत दिशाओं में चलना प्रारम्भ करती हैं तो वे 1 घंटे पश्चात् मिलती हैं। दोनों कारों की चाल ज्ञात कीजिए।
- (v) एक आयत का क्षेत्रफल 9 वर्ग इकाई कम हो जाता है, यदि उसकी लम्बाई 5 इकाई कम कर दी जाती है और चौड़ाई 3 इकाई बढ़ा दी जाती है। यदि हम लम्बाई को 3 इकाई और चौड़ाई को 2 इकाई बढ़ा दें, तो क्षेत्रफल 67 वर्ग इकाई बढ़ जाता है। आयत की विमाएँ ज्ञात कीजिए।